分块矩阵习题选解

以下所有习题都来自David C.Lay《线性代数及其应用》第2.4节.

问题 1. 形如$A=
\begin{bmatrix}
A_{11}&A_{12}\\
0&A_{22}
\end{bmatrix}
$的矩阵称为分块上三角矩阵,设$A_{11}$是$p\times p$矩阵,$A_{22}$是$q\times q$矩阵,且$A$为可逆矩阵.求$A^{-1}$的表达式.

解答 1.1. $$
\begin{bmatrix}
A_{11}^{-1}&0\\
0&I
\end{bmatrix}
\begin{bmatrix}
A_{11}&A_{12}\\
0&A_{22}
\end{bmatrix}=
\begin{bmatrix}
I&A_{11}^{-1}A_{12}\\
0&A_{22}
\end{bmatrix},
$$
$$
\begin{bmatrix}
I&0\\
0&A_{22}^{-1}
\end{bmatrix}
\begin{bmatrix}
I&A_{11}^{-1}A_{12}\\
0&A_{22}
\end{bmatrix}=
\begin{bmatrix}
I&A_{11}^{-1}A_{12}\\
0&I
\end{bmatrix}
$$

$$
\begin{bmatrix}
I&-A_{11}^{-1}A_{12}\\
0&I
\end{bmatrix}
\begin{bmatrix}
I&A_{11}^{-1}A_{12}\\
0&I
\end{bmatrix}=
\begin{bmatrix}
I&0\\
0&I
\end{bmatrix}.
$$

$$
A^{-1}=
\begin{bmatrix}
I&-A_{11}^{-1}A_{12}\\
0&I
\end{bmatrix}
\begin{bmatrix}
I&0\\
0&A_{22}^{-1}
\end{bmatrix}
\begin{bmatrix}
A_{11}^{-1}&0\\
0&I
\end{bmatrix}=
\begin{bmatrix}
A_{11}^{-1}&-A_{11}^{-1}A_{12}A_{22}^{-1}\\
0&A_{22}^{-1}
\end{bmatrix}.
$$

问题 2. 证明$
\begin{bmatrix}
I&0\\
A&I
\end{bmatrix}
$可逆并求出它的逆.

解答 2.1. $$
\begin{bmatrix}
I&0\\
-A&I
\end{bmatrix}
\begin{bmatrix}
I&0\\
A&I
\end{bmatrix}=
\begin{bmatrix}
I&0\\
0&I
\end{bmatrix},
$$
因此矩阵$
\begin{bmatrix}
I&0\\
A&I
\end{bmatrix}
$可逆.其逆为$
\begin{bmatrix}
I&0\\
-A&I
\end{bmatrix}
$.

问题 3. 计算$X^TX$,其中$X$分块为$
\begin{bmatrix}
X_1&X_2
\end{bmatrix}
$.

解答 3.1. $$
X^TX=
\begin{bmatrix}
X_1^T\\
X_2^T
\end{bmatrix}
\begin{bmatrix}
X_1&X_2
\end{bmatrix}=
\begin{bmatrix}
X_1^TX_1&X_1^TX_2\\
X_2^TX_1&X_2^TX_2
\end{bmatrix}.
$$

问题 4. 设$A_{11}$可逆,求出$X$与$Y$使
$$
\begin{bmatrix}
A_{11}&A_{12}\\
A_{21}&A_{22}
\end{bmatrix}=
\begin{bmatrix}
I&0\\
X&I
\end{bmatrix}
\begin{bmatrix}
A_{11}&0\\
0&S
\end{bmatrix}
\begin{bmatrix}
I&Y\\
0&I
\end{bmatrix}
$$
其中$S=A_{22}-A_{21}A_{11}^{-1}A_{12}$,矩阵$S$称为$A_{11}$的舒尔补,这样的表达式常在系统工程和其他地方中出现.

解答 4.1. $$
\begin{bmatrix}
I&0\\
-A_{21}A_{11}^{-1}&I
\end{bmatrix}
\begin{bmatrix}
A_{11}&A_{12}\\
A_{21}&A_{22}
\end{bmatrix}=
\begin{bmatrix}
A_{11}&A_{12}\\
0&A_{22}-A_{21}A_{11}^{-1}A_{12}
\end{bmatrix},
$$
$$
\begin{bmatrix}
A_{11}&A_{12}\\
0&A_{22}-A_{21}A_{11}^{-1}A_{12}
\end{bmatrix}
\begin{bmatrix}
I&-A_{12}A_{11}^{-1}\\
0&I
\end{bmatrix}=
\begin{bmatrix}
A_{11}&0\\
0&A_{22}-A_{21}A_{11}^{-1}A_{12}
\end{bmatrix}.
$$
因此
$$
\begin{bmatrix}
I&Y\\
0&I
\end{bmatrix}=
\begin{bmatrix}
I&-A_{12}A_{11}^{-1}\\
0&I
\end{bmatrix}^{-1}=
\begin{bmatrix}
I&A_{12}A_{11}^{-1}\\
0&I
\end{bmatrix},
$$
表明$Y=A_{12}A_{11}^{-1}$.
$$
\begin{bmatrix}
I&0\\
X&I
\end{bmatrix}=
\begin{bmatrix}
I&0\\
-A_{21}A_{11}^{-1}&I
\end{bmatrix}^{-1}=
\begin{bmatrix}
I&0\\
A_{21}A_{11}^{-1}&I
\end{bmatrix},
$$
表明$X=A_{21}A_{11}^{-1}$.

问题 5. 求分块矩阵$
\begin{bmatrix}
I&0&0\\
C&I&0\\
A&B&I
\end{bmatrix}
$的逆.

解答 5.1.
$$
\begin{bmatrix}
I&0&0\\
-C&I&0\\
BC-A&-B&I
\end{bmatrix}.
$$

问题 6. 设$A_{11}$是可逆矩阵,求出矩阵$X$和$Y$使下列的积有所说的形式,并计算$B_{22}$.
$$
\begin{bmatrix}
I&0&0\\
X&I&0\\
Y&0&I
\end{bmatrix}
\begin{bmatrix}
A_{11}&A_{12}\\
A_{21}&A_{22}\\
A_{31}&A_{32}
\end{bmatrix}=
\begin{bmatrix}
B_{11}&B_{12}\\
0&B_{22}\\
0&B_{32}
\end{bmatrix}.
$$

解答 6.1. $$
\begin{bmatrix}
I&0&0\\
-A_{21}A_{11}^{-1}&I&0\\
-A_{31}A_{11}^{-1}&0&I
\end{bmatrix}
\begin{bmatrix}
A_{11}&A_{12}\\
A_{21}&A_{22}\\
A_{31}&A_{32}
\end{bmatrix}=
\begin{bmatrix}
A_{11}&A_{12}\\
0&A_{22}-A_{21}A_{11}^{-1}A_{12}\\
0&A_{32}-A_{33}A_{11}^{-1}A_{12}
\end{bmatrix}
$$

问题 7. 设$A=
\begin{bmatrix}
B&0\\
0&C
\end{bmatrix}
$,其中$B$和$C$是方阵,证明$A$可逆当且仅当$B$和$C$都可逆.

解答 7.1. 当矩阵$B$和$C$都可逆时,
$$
\begin{bmatrix}
B^{-1}&0\\
0&C^{-1}
\end{bmatrix}
\begin{bmatrix}
B&0\\
0&C
\end{bmatrix}=
\begin{bmatrix}
I&0\\
0&I
\end{bmatrix},
$$
因此矩阵$A$可逆.反之,当矩阵$A$可逆时,存在矩阵$X,Y,Z,W$,使得
$$
\begin{bmatrix}
X&Y\\
Z&W
\end{bmatrix}
\begin{bmatrix}
B&0\\
0&C
\end{bmatrix}=
\begin{bmatrix}
I&0\\
0&I
\end{bmatrix}
$$
解得$XB=I,WC=I$.由于$B,C$都是方阵,因此矩阵$B$和$C$都可逆.

问题 8. 形如$A=
\begin{bmatrix}
A_{11}&A_{12}\\
0&A_{22}
\end{bmatrix}
$的矩阵称为分块上三角矩阵.证明矩阵$A$可逆当且仅当$A_{11}$和$A_{22}$都
可逆.

解答 8.1. 通过初等行变换可以把问题8化归为问题7.

问题 9. 当太空卫星发射之后,为使卫星在精确计算过的轨道上运行,需要校正它的位置.雷达屏幕给出一组向量$\bm{x}_1,\cdots,\bm{x}_k$,它们给出卫星在不同时间里的位置与计划轨道的比较.设$X_k$表示矩阵$
\begin{bmatrix}
\bm{x}_1&\cdots&\bm{x}_k
\end{bmatrix}
$,矩阵$G_k=X_kX_k^T$需要在雷达分析数据时计算出来,因数据向量高速到达,所以计算负担很重.分块矩阵的计算起很大作用.计算$G_k$和$G_{k+1}$的列展开,叙述从$G_k$如何计算$G_{k+1}$.

解答 9.1. $$
G_{k+1}=X_{k+1}X_{k+1}^T=
\begin{bmatrix}
X_k&\bm{x}_{k+1}
\end{bmatrix}
\begin{bmatrix}
X_k^T\\
\bm{x}_{k+1}^T
\end{bmatrix}=X_kX_k^T+\bm{x}_{k+1}\bm{x}_{k+1}^T=G_k+\bm{x}_{k+1}\bm{x}_{k+1}^T.
$$

问题 10. 设$X$是$m\times n$矩阵,且$X^TX$可逆.又设$M=I_m-X(X^TX)^{-1}X^T$.加一列$\bm{x}_0$于这组数据,构成矩阵$W=
\begin{bmatrix}
X&\bm{x}_0
\end{bmatrix}
$,计算$W^TW$.它的$(1,1)$元素为$X^TX$,证明$X^TX$的舒尔补是$\bm{x}_0^TM\bm{x}_0$,可以证明数$(\bm{x}_0^TM\bm{x}_0)^{-1}$是$(W^TW)^{-1}$的$(2,2)$元素,在适当假设下,这个数有一个有用的统计解释.

解答 10.1. $$
W^{T}W=
\begin{bmatrix}
X^T\\
\bm{x}_0^{T}
\end{bmatrix}
\begin{bmatrix}
X&\bm{x}_{0}
\end{bmatrix}=
\begin{bmatrix}
X^TX&X^T\bm{x}_0\\
\bm{x}_{0}^TX&\bm{x_{0}}^{T}\bm{x}_0
\end{bmatrix}.
$$
$X^TX$的舒尔补是
$$
\bm{x}_0^{T}\bm{x}_0-\bm{x}_0^TX(X^{T}X)^{-1}X^T\bm{x}_0=\bm{x}_0^TM\bm{x}_0.
$$

Tags: ,

Reply

电子邮件地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据

%d 博主赞过: