关于e的一个问题串

问题 1 (自编). 已知
$$
\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e,
$$
其中$n\in \mathbf{N}^{+}$.证明
$$
\lim_{n\to\infty}\left(1+\frac{k}{n}\right)^n=e^k,
$$
其中$n,k\in \mathbf{N}^{+}$.

解答 1.1. 证明使用数学归纳法.当$k=1$时,由已知命题成立.假设当$k=m(m\in
\mathbf{N}^{+})$时,命题成立,即
$$
\lim_{n\to\infty}\left(1+\frac{m}{n}\right)^n=e^m,
$$
则当$k=m+1$时,
\begin{align*}
\lim_{n\to\infty}\frac{\left(1+\frac{m+1}{n}\right)^n}{\left(1+\frac{1}{n}\right)^n}&=\lim_{n\to\infty}\left(\frac{1+\frac{m+1}{n}}{1+\frac{1}{n}}\right)^n\\&=\lim_{n\to\infty}\left(\frac{n+m+1}{n+1}\right)^n\\&=\lim_{n\to\infty}\left(1+\frac{m}{n+1}\right)^{n}
\\&=\lim_{n\to\infty}\left[\left(1+\frac{m}{n+1}\right)^{n+1}\right]^{\frac{n}{n+1}}
\\&=\lim_{n\to\infty}(e^m)^{\frac{n}{n+1}}
\\&=e^m.
\end{align*}

$$
\lim_{n\to\infty}\left(1+\frac{m+1}{n}\right)^n=e^{m+1}.
$$
由数学归纳法,对于任意$k,n\in \mathbf{N}^{+}$,都有
$$
\lim_{n\to\infty}\left(1+\frac{k}{n}\right)^n=e^{k}
$$

问题 2 (自编). 已知
$$
\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e,
$$
其中$n\in \mathbf{N}^{+}$.证明当$x\in \mathbf{R}^{+}$时,
$$
\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^{x}=e.
$$

解答 2.1. 记$[x]$为不超过$x$的最大正整数.则
$$
\left(1+\frac{1}{[x]+1}\right)^{[x]}<\left(1+\frac{1}{x}\right)^{x}<\left(1+\frac{1}{[x]}\right)^{[x]+1},
$$

$$
\lim_{x\to\infty}\left(1+\frac{1}{[x]}\right)^{[x]+1}=\lim_{x\to\infty}\left(1+\frac{1}{[x]}\right)^{[x]}\left(1+\frac{1}{[x]}\right)=e,
$$

$$
\lim_{x\to\infty}\left(1+\frac{1}{[x]+1}\right)^{[x]}=\lim_{x\to\infty}\frac{\left(1+\frac{1}{[x]+1}\right)^{[x]+1}}{\left(1+\frac{1}{[x]+1}\right)}=e.
$$
故由两边夹准则,
$$
\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^{x}=e.
$$

问题 3. 利用问题2的结论重做问题1.

解答 3.1. 当$n,k\in \mathbf{N}^{+}$时,
$$
\lim_{n\to\infty}\left(1+\frac{m}{n}\right)^n=\lim_{n\to\infty}\left[\left( 1+\frac{1}{\frac{n}{m}} \right)^{\frac{n}{m}}\right]^{m}=e^m.
$$

问题 4. 证明
$$
\lim_{x\to +\infty}\left( 1-\frac{1}{x} \right)^x=\frac{1}{e}.
$$

解答 4.1. \begin{align*}
\lim_{x\to+\infty}\left( 1-\frac{1}{x} \right)^x&=\lim_{x\to
+\infty}\left(
\frac{1}{1-\frac{1}{x}}
\right)^{-x}
\\&=\lim_{x\to+\infty}\frac{1}{\left(
1+\frac{1}{x-1} \right)^{x}}
\\&=\lim_{x\to+\infty}\frac{1}{\left( 1+\frac{1}{x-1}
\right)^{x-1}}\cdot \frac{1}{1+\frac{1}{x-1}}
\\&=\frac{1}{e}.
\end{align*}

问题 5. 证明
$$
\lim_{x\to+\infty}\left( 1+\frac{k}{x} \right)^x=e^{k},
$$
其中$k\in \mathbf{Z}$.

解答 5.1. \begin{align*}
\lim_{x\to+\infty}\left( 1+\frac{k}{x}
\right)^x&=\lim_{x\to+\infty}\left[\left( 1+\frac{1}{\frac{x}{k}}
\right)^{\frac{x}{k}}\right]^{k}
\\&=e^{k}.
\end{align*}

问题 6. 已知$f(x)=e^{x}$.证明$f'(x)=e^{x}$.

解答 6.1. \begin{align*}
f'(x)&=\lim_{\Delta x\to 0}\cfrac{e^{x+\Delta x}-e^{x}}{\Delta
x}\\&=e^{x}\lim_{\Delta x\to 0}\frac{e^{\Delta x}-1}{\Delta
x}
\\&=e^x\lim_{\Delta x\to 0}\left[\lim_{n\to\infty}\cfrac{\left( 1+\cfrac{\Delta x}{n}
\right)^n-1}{\frac{\Delta x}{n}}\cdot \cfrac{1}{n}\right]
\end{align*}
由微分中值定理,当$\Delta x>0$时,存在$\xi\in \left(1,1+\cfrac{\Delta
x}{n}\right)$,当$\Delta x<0$时,存在$\xi\in \left( 1+\cfrac{\Delta x}{n},1 \right)$,使得
$$
n\xi^{n-1}=\frac{\left( 1+\cfrac{\Delta x}{n} \right)^n-1}{\cfrac{\Delta x}{n}},
$$
因此
$$
\frac{\left( 1+\cfrac{\Delta x}{n} \right)^{n}-1}{\cfrac{\Delta x}{n}}\cdot \cfrac{1}{n}=\xi^{n-1}.
$$

$$
f'(x)=e^x\lim_{\Delta x\to
0}\left(\lim_{n\to\infty}\xi^{n-1}\right)\leq e^{x}\lim_{\Delta x\to
0}\left[\lim_{n\to\infty}\left(1+\frac{|\Delta x|}{n}
\right)^{n-1}\right]=e^x\lim_{\Delta x\to 0}e^{|\Delta x|}=e^{x}.
$$

问题 7. 已知$f(x)=e^{x}-\left(1+\cfrac{x}{n}\right)^n$,$x\in
[0,+\infty)$,$n\in \mathbf{N}^{+}$,$e$是自然对数的底数.证明:$f(x)$在$[0.+\infty)$上严格单调递增.

解答 7.1. 因为当$x>0$时,
$$
f'(x)=e^x-\left( 1+\frac{x}{n} \right)^{n-1}>e^{x}-\left( 1+\frac{x}{n} \right)^n>0,
$$
所以$f(x)$在$[0,+\infty)$上严格单调递增.

问题 8. 已知$f(x)=\left( 1+\cfrac{x}{m} \right)^{m}-\left( 1+\cfrac{x}{n}
\right)^n$,$x\in [0,+\infty)$.其中$m,n\in \mathbf{N}^{+}$且$m>n$.证明:$f(x)$在$[0,+\infty)$上单调递增.

解答 8.1. 当$x>0$时,
$$
f'(x)=\left( 1+\frac{x}{m} \right)^{m-1}-\left( 1+\frac{x}{n}
\right)^{n-1}=\left[\left( 1+\frac{x}{m}
\right)^m\right]^{\frac{m-1}{m}}-\left[\left( 1+\frac{x}{n} \right)^{n}\right]^{\frac{n-1}{n}}.
$$
因为$m>n>0$,所以
$$
\left( 1+\frac{x}{m} \right)^m>\left( 1+\frac{x}{n} \right)^n,\frac{m-1}{m}>\frac{n-1}{n},
$$

$$
f'(x)=\left[\left( 1+\frac{x}{m}
\right)^m\right]^{\frac{m-1}{m}}-\left[\left( 1+\frac{x}{n} \right)^{n}\right]^{\frac{n-1}{n}}>0
$$
故$f(x)$在$[0,+\infty)$上单调递增.

问题 9. 利用问题3的结论用另外的方法证明问题1的结论.

解答 9.1. 在问题3中,令$m\to\infty$即可得到问题1的结论.

Tags:

Reply

电子邮件地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据

%d 博主赞过: