垂心

You are currently browsing articles tagged 垂心.

培训地点:永临中学教师会议室

培训时间:2018.3.29

人员:高一、高二联合竞赛培训

 

培训材料(来自甘大旺编著的《高考数学150专题》):

有关三角形及其五心的向量关系来自甘大旺的《高考数学150专题》

下载

 

附加材料:

1.向量法证明三角形三条高线交于一点(一种更自然的思路),写于2018.3.31

向量法证明三角形三条高线交于一点

下载

2.一道与面积比有关的向量题

3.欧拉线定理的几何证明(来自维基百科)

4.坐标法证明欧拉线定理(此文用到了二阶行列式和解线性方程组的Cramer法则,以及和差化积、积化和差等三角公式,可能不适合学生阅读,仅供参考)

Tags: , , , , ,

 

定理(欧拉线定理) 若点{O}、点{G}、点{H}分别是{\triangle ABC}的外心、重心、垂心,求证:

  • {\overrightarrow{OH}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}};
  • {\overrightarrow{GH}=2\overrightarrow{OG}}.

 

证明:

  • 使用坐标法.以{O}为原点,在平面{ABC}上建立平面直角坐标系.设 {\triangle ABC}的半径为{R},且点{A,B,C}的坐标依次为 {A(x_{A},y_{A})=(R\cos\alpha,R\sin\alpha)},{B(x_{B},y_{B})=(R\cos\beta,R\sin\beta)}, {C(x_{C},y_{C})=(R\cos\gamma,R\sin\gamma)}.先求垂心{H}的坐标{(x,y)}.因为向量{\overrightarrow{AH}\perp \overrightarrow{BC}},所以 {\overrightarrow{AH}\cdot\overrightarrow{BC}=0},由向量数量积的坐标表示,可 得

    \displaystyle (x-R\cos\alpha)(R\cos\gamma-R\cos\beta)+(y-R\sin\alpha)(R\sin\gamma-R\sin\beta)=0.

    整理可得

    \displaystyle (\cos\gamma-\cos\beta)x+(\sin\gamma-\sin\beta)y=(\cos\gamma-\cos\beta)R\cos\alpha+(\sin\gamma-\sin\beta)R\sin\alpha \ \ \ \ \ (1)

    同样由{\overrightarrow{BH}\perp \overrightarrow{CA}},可得

    \displaystyle (\cos\alpha-\cos\gamma)x+(\sin\alpha-\sin\gamma)y=(\cos\alpha-\cos\gamma)R\cos\beta+(\sin\alpha-\sin\gamma)R\sin\beta. \ \ \ \ \ (2)

    联立方程(1),(2),得到方程组.下面解该线性方程组.令行列式

    \displaystyle \begin{array}{rcl} \det A= \begin{vmatrix} \cos\gamma-\cos\beta & \sin\gamma-\sin\beta\\ \cos\alpha-\cos\gamma &\sin\alpha-\sin\gamma \end{vmatrix}&=& \begin{vmatrix} 2\sin \frac{\beta+\gamma}{2}\sin \frac{\beta-\gamma}{2}&2\cos \frac{\beta+\gamma}{2}\sin \frac{\gamma-\beta}{2}\\ 2\sin \frac{\gamma+\alpha}{2}\sin \frac{\gamma-\alpha}{2}&2\cos \frac{\gamma+\alpha}{2}\sin \frac{\alpha-\gamma}{2} \end{vmatrix}\\ &=&4\sin \frac{\beta-\gamma}{2}\sin \frac{\gamma-\alpha}{2} \begin{vmatrix} \sin \frac{\beta+\gamma}{2}&-2\cos \frac{\beta+\gamma}{2}\\ \sin \frac{\gamma+\alpha}{2}&-2\cos \frac{\gamma+\alpha}{2} \end{vmatrix}\\ &=&4\sin \frac{\alpha-\beta}{2}\sin \frac{\beta-\gamma}{2}\sin \frac{\gamma-\alpha}{2}. \end{array}

    \displaystyle \begin{array}{rcl} \det B_1&=& \begin{vmatrix} (\cos\gamma-\cos\beta)R\cos\alpha+(\sin\gamma-\sin\beta)R\sin\alpha &\sin\gamma-\sin\beta\\ (\cos\alpha-\cos\gamma)R\cos\beta+(\sin\alpha-\sin\gamma)R\sin\beta&\sin\alpha-\sin\gamma \end{vmatrix}\\ &=&R \begin{vmatrix} \cos(\alpha-\gamma)-\cos(\alpha-\beta)&\sin\gamma-\sin\beta\\ \cos(\beta-\alpha)-\cos(\beta-\gamma)&\sin\alpha-\sin\gamma \end{vmatrix}\\ &=&R \begin{vmatrix} 2\sin (\alpha-\frac{\beta+\gamma}{2})\sin \frac{\gamma-\beta}{2}& 2\cos \frac{\beta+\gamma}{2}\sin \frac{\gamma-\beta}{2}\\ 2\sin (\beta-\frac{\alpha+\gamma}{2})\sin \frac{\alpha-\gamma}{2}&2\cos \frac{\gamma+\alpha}{2}\sin \frac{\alpha-\gamma}{2} \end{vmatrix}\\ &=&4R\left[\sin(\alpha-\frac{\beta+\gamma}{2})\sin \frac{\gamma-\beta}{2}\cos \frac{\gamma+\alpha}{2}\sin \frac{\alpha-\gamma}{2}-\sin(\beta-\frac{\alpha+\gamma}{2})\sin \frac{\alpha-\gamma}{2}\cos \frac{\beta+\gamma}{2}\sin \frac{\gamma-\beta}{2}\right]\\ &=&4R\sin \frac{\alpha-\gamma}{2}\sin \frac{\gamma-\beta}{2}\left[\sin(\alpha-\frac{\beta+\gamma}{2})\cos \frac{\gamma+\alpha}{2}-\sin(\beta-\frac{\alpha+\gamma}{2})\cos \frac{\beta+\gamma}{2}\right] \end{array}

    \displaystyle \begin{array}{rcl} &=&4R\sin \frac{\alpha-\gamma}{2}\sin \frac{\gamma-\beta}{2}\left[\frac{\sin(\frac{3\alpha}{2}-\frac{\beta}{2})-\sin(\gamma+\frac{\beta-\alpha}{2})}{2}-\frac{\sin(\frac{3\beta}{2}-\frac{\alpha}{2})-\sin(\gamma-\frac{\beta-\alpha}{2})}{2}\right]\\ &=& 4R\sin \frac{\alpha-\gamma}{2}\sin \frac{\gamma-\beta}{2}\left[\frac{\sin(\frac{3\alpha}{2}-\frac{\beta}{2})-\sin (\frac{3\beta}{2}-\frac{\alpha}{2})}{2}+\frac{\sin(\gamma-\frac{\beta-\alpha}{2})-\sin(\gamma+\frac{\beta-\alpha}{2})}{2}\right]\\ &=&4R\sin \frac{\alpha-\gamma}{2}\sin \frac{\gamma-\beta}{2}\left[\cos \frac{\alpha+\beta}{2}\sin(\alpha-\beta)+\cos\gamma\sin \frac{\alpha-\beta}{2}\right]\\ &=& 4R\sin \frac{\alpha-\gamma}{2}\sin \frac{\gamma-\beta}{2}\left[2\cos \frac{\alpha+\beta}{2}\sin \frac{\alpha-\beta}{2}\cos \frac{\alpha-\beta}{2}+\cos\gamma\sin \frac{\alpha-\beta}{2}\right]\\ &=&4R\sin \frac{\alpha-\gamma}{2}\sin \frac{\gamma-\beta}{2}\sin \frac{\alpha-\beta}{2}\left[2\cos \frac{\alpha+\beta}{2}\cos \frac{\alpha-\beta}{2}+\cos\gamma\right]\\ &=&4R\sin \frac{\alpha-\gamma}{2}\sin \frac{\gamma-\beta}{2}\sin \frac{\alpha-\beta}{2}(\cos\alpha+\cos\beta+\cos\gamma)\\ &=&4R\sin \frac{\alpha-\beta}{2}\sin \frac{\beta-\gamma}{2}\sin \frac{\gamma-\alpha}{2}(\cos\alpha+\cos\beta+\cos\gamma) \end{array}

    由解线性方程组的Cramer法则,

    \displaystyle x=\frac{\det B_1}{\det A}=R\cos\alpha+R\cos\beta+R\cos\gamma=x_A+x_B+x_C

    由对称性,

    \displaystyle y=y_A+y_B+y_C.

    所以垂心{H}的坐标为{(x_A+x_B+x_C,y_A+y_B+y_C)}.所以{\overrightarrow{OH}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}}.

  • 重心{G}的坐标为 {G(\frac{x_A+x_B+x_C}{3},\frac{y_A+y_B+y_C}{3})}.所以 {\overrightarrow{OH}=3\overrightarrow{OG}},所以{\overrightarrow{GH}=2\overrightarrow{OG}}. \Box

Tags: , , , ,